

ERDOS

ERDOS is a platform for developing self-driving cars and robotics
applications.

View the codebase on GitHub [https://github.com/erdos-project/erdos].

Example Use

Construct the dataflow graph in the driver.
The dataflow graph consists of operators which process data,
and streams which broadcast messages to other operators.
def driver():
 # Create a camera operator which generates a stream of RGB images.
 camera_stream = erdos.connect(CameraOp)
 # Create an object detection operator with the provided model.
 # The object detection operator reads RGB images and sends bounding boxes.
 bounding_box_stream = erdos.connect(ObjectDetectorOp, [camera_stream],
 model="models/ssd_mobilenet_v1_coco")
 # Create semantic segmentation operator with the provided model
 segmentation_stream = erdos.connect(SegmentationOp, [camera_stream],
 model="models/drn_d_22_cityscapes")
 # Create an action operator to propose actions from provided features
 action_op = erdos.connect(ActionOp, [bounding_box_stream, segmentation_stream])
 # Create a robot operator to interface with the robot
 erdos.connect(RobotOp)

if __name__ == "__main__":
 # Execute the application
 erdos.run(driver)

Getting Started

	Operators

	Streams

	Messages

Operators

Operators process data in ERDOS applications.

Operators receive messages from streams passed to the connect static method.
Operators also create streams on which they send messages. These streams must
created and returned by the connect method.
ERDOS expects developers to specify which streams operators read from and write
to. For more details, see the
data streams documentation.

All operators must implement erdos.Operator abstract class.

Operators set up state in the __init__ method. Operators should also
add callbacks to streams in __init__.

Implement execution logic by overriding the run method. This method may
contain a control loop or call methods that run regularly.
Callbacks are not invoked while run executes.

API

Examples

Periodically Publishing Data

class SendOp(erdos.Operator):
 def __init__(self, write_stream):
 self.write_stream = write_stream

 @staticmethod
 def connect():
 return [erdos.WriteStream()]

 def run(self):
 count = 0
 while True:
 msg = erdos.Message(erdos.Timestamp(coordinates=[count]), count)
 print("SendOp: sending {msg}".format(msg=msg))
 self.write_stream.send(msg)

 count += 1
 time.sleep(1)

Processing Data via Callbacks

class CallbackOp(erdos.Operator):
 def __init__(self, read_stream):
 print("initializing op")
 read_stream.add_callback(CallbackOp.callback)

 @staticmethod
 def callback(msg):
 print("CallbackOp: received {msg}".format(msg=msg))

 @staticmethod
 def connect(read_streams):
 return []

Processing Data by Pulling Messages

class PullOp:
 def __init__(self, read_stream):
 self.read_stream = read_stream

 @staticmethod
 def connect(read_streams):
 return []

 def run(self):
 while True:
 data = self.read_stream.read()
 print("PullOp: received {data}".format(data=data))

Streams

Streams are used to send messages in ERDOS applications.

Operators send and read messages from streams to communicate with other
operators and ingest/extract data from the system.

ERDOS streams are similar to ROS topics, but have few additional desirable
properties. Streams facilitate one-to-many communication, so only 1 operator
sends messages on a stream. ERDOS broadcasts messages sent on a stream to all
connected operators. In addition, streams are typed when using the Rust API.

Use the following interfaces to send and receive data from streams:
Read Stream, Write Stream, Ingest Stream, and Extract Stream.

Sending Messages

Operators use Write Streams to send data.

Receiving Messages

Operators receive data by registering callbacks or manually reading messages
from Read Streams.

Callbacks are functions which take an ERDOS message and any necessary write
streams as arguments. Generally, callbacks process received messages and
publish the results on write streams.

Ingesting and Extracting Data

Some applications have trouble placing all of the data processing logic inside
operators. For these applications, ERDOS provides special stream interfaces to
ingest and extract data.

A comprehensive example is available here [https://github.com/erdos-project/erdos/blob/master/python/examples/ingest_extract.py].

Loops

Certain applications require feedback in the dataflow. To support this use
case, ERDOS provides the LoopStream interface to support loops in the
dataflow.

A comprehensive example is available here [https://github.com/erdos-project/erdos/blob/master/python/examples/loop.py].

Messages

ERDOS applications send data on streams via messages. Messages wrap data and
provide timestamp information used to resolve control loops and track data flow
through the system.

Timestamps consist of an array of coordinates. Timestamp semantics are
user-defined for now; however, we may eventually formalize their use in the
future in order to provide more advanced features in order to scale up stateful
operators. Generally, the 0th coordinate is used to track message’s sequence
number and subsequent coordinates track the message’s progress in cyclic data
flows.

Index

 nav.xhtml

 Table of Contents

 		
 ERDOS

 		
 Operators

 		
 API

 		
 Examples

 		
 Periodically Publishing Data

 		
 Processing Data via Callbacks

 		
 Processing Data by Pulling Messages

 		
 Streams

 		
 Sending Messages

 		
 Receiving Messages

 		
 Ingesting and Extracting Data

 		
 Loops

 		
 Messages

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

