

What is ERDOS?

ERDOS is a platform for developing self-driving cars and robotics
applications.

The system is built using techniques from streaming dataflow systems which is
reflected by the API.
Applications are modeled as directed graphs, in which data flows through
streams and is processed by operators.
Because applications often resemble a sequence of connected operators,
an ERDOS application may also be referred to as a pipeline.

Example

The following example demonstrates a toy robotics application which uses
semantic segmentation and the bounding boxes of detected objects to control a
robot.
The example consists of the driver part of the program, which is responsible
for connecting operators via streams.

Create a camera operator which generates a stream of RGB images.
camera_frames = erdos.connect(CameraOp)

Connect an object detection operator which uses the provided model to
detect objects and compute bounding boxes.
bounding_boxes = erdos.connect(ObjectDetectorOp, erdos.OperatorConfig(),
 [camera_frames],
 model="models/ssd_mobilenet_v1_coco")
Connect semantic segmentation operator to the camera which computes the
semantic segmentation for each image.
segmentation = erdos.connect(SegmentationOp, [camera_frames],
 erdos.OperatorConfig(),
 model="models/drn_d_22_cityscapes")

Connect an action operator to propose actions from provided features.
actions = erdos.connect(ActionOp, erdos.OperatorConfig(),
 [bounding_boxes, segmentation])
Create a robot operator which interfaces with the robot to apply actions.
erdos.connect(RobotOp, erdos.OperatorConfig(), [actions])

Execute the application.
erdos.run()

Further examples are available on
GitHub [https://github.com/erdos-project/erdos/tree/master/python/examples]

For information on building operators, see § Operators.

Driver

The driver section of the program connects operators together using streams to
build an ERDOS application which may then be executed.
The driver is typically the main section of the program.

The driver may also interact with a running ERDOS application.
Using the IngestStream, the driver can send
data to operators on a stream.
The ExtractStream allows the driver to read
data sent from an operator.

Determinism

ERDOS provides mechanisms to enable the building of deterministic
applications.
For instance, processing sets of messages separated by watermarks using
watermark callbacks and the Rust time-versioned state data structure
turns ERDOS pipelines into
Kahn process networks [https://en.wikipedia.org/wiki/Kahn_process_networks].

For more information, see WatermarkMessage and
erdos.add_watermark_callback().

Performance

ERDOS is designed for low latency. Self-driving car pipelines require
end-to-end deadlines on the order of hundreds of milliseconds for safe
driving. Similarly, self-driving cars typically process gigabytes per
second of data on small clusters. Therefore, ERDOS is optimized to
send small amounts of data (gigabytes as opposed to terabytes)
as quickly as possible.

For performance-sensitive applications, it is recommended to use the Rust API
as Python introduces significant overheads (e.g. serialization and
reduced parallelism from the
GIL [https://wiki.python.org/moin/GlobalInterpreterLock]).

View the codebase on GitHub [https://github.com/erdos-project/erdos].

You can export the dataflow graph as a
DOT file [https://en.wikipedia.org/wiki/DOT_(graph_description_language)]
by setting the graph_filename argument in erdos.run().

Overview

	What is ERDOS?

	Streams

	Operators

	Messages

	ERDOS Package Reference

What is ERDOS?

ERDOS is a platform for developing self-driving cars and robotics
applications.

The system is built using techniques from streaming dataflow systems which is
reflected by the API.
Applications are modeled as directed graphs, in which data flows through
streams and is processed by operators.
Because applications often resemble a sequence of connected operators,
an ERDOS application may also be referred to as a pipeline.

Example

The following example demonstrates a toy robotics application which uses
semantic segmentation and the bounding boxes of detected objects to control a
robot.
The example consists of the driver part of the program, which is responsible
for connecting operators via streams.

Create a camera operator which generates a stream of RGB images.
camera_frames = erdos.connect(CameraOp)

Connect an object detection operator which uses the provided model to
detect objects and compute bounding boxes.
bounding_boxes = erdos.connect(ObjectDetectorOp, erdos.OperatorConfig(),
 [camera_frames],
 model="models/ssd_mobilenet_v1_coco")
Connect semantic segmentation operator to the camera which computes the
semantic segmentation for each image.
segmentation = erdos.connect(SegmentationOp, [camera_frames],
 erdos.OperatorConfig(),
 model="models/drn_d_22_cityscapes")

Connect an action operator to propose actions from provided features.
actions = erdos.connect(ActionOp, erdos.OperatorConfig(),
 [bounding_boxes, segmentation])
Create a robot operator which interfaces with the robot to apply actions.
erdos.connect(RobotOp, erdos.OperatorConfig(), [actions])

Execute the application.
erdos.run()

Further examples are available on
GitHub [https://github.com/erdos-project/erdos/tree/master/python/examples]

For information on building operators, see § Operators.

Driver

The driver section of the program connects operators together using streams to
build an ERDOS application which may then be executed.
The driver is typically the main section of the program.

The driver may also interact with a running ERDOS application.
Using the IngestStream, the driver can send
data to operators on a stream.
The ExtractStream allows the driver to read
data sent from an operator.

Determinism

ERDOS provides mechanisms to enable the building of deterministic
applications.
For instance, processing sets of messages separated by watermarks using
watermark callbacks and the Rust time-versioned state data structure
turns ERDOS pipelines into
Kahn process networks [https://en.wikipedia.org/wiki/Kahn_process_networks].

For more information, see WatermarkMessage and
erdos.add_watermark_callback().

Performance

ERDOS is designed for low latency. Self-driving car pipelines require
end-to-end deadlines on the order of hundreds of milliseconds for safe
driving. Similarly, self-driving cars typically process gigabytes per
second of data on small clusters. Therefore, ERDOS is optimized to
send small amounts of data (gigabytes as opposed to terabytes)
as quickly as possible.

For performance-sensitive applications, it is recommended to use the Rust API
as Python introduces significant overheads (e.g. serialization and
reduced parallelism from the
GIL [https://wiki.python.org/moin/GlobalInterpreterLock]).

View the codebase on GitHub [https://github.com/erdos-project/erdos].

You can export the dataflow graph as a
DOT file [https://en.wikipedia.org/wiki/DOT_(graph_description_language)]
by setting the graph_filename argument in erdos.run().

Streams

Streams are used to send data in ERDOS applications.

ERDOS streams are similar to ROS topics, but have a few additional desirable
properties. Streams facilitate one-to-many communication, so only 1 operator
sends messages on a stream.
ERDOS broadcasts messages sent on a stream to all connected operators.
In addition, streams are typed when using the Rust API.

Streams expose 2 classes of interfaces that access the underlying stream:

	Read-interfaces expose methods to receive and process data. They allow
pulling data by calling read() and try_read().
Often, they also support a push data model accessed by registering
callbacks (e.g. add_callback and add_watermark_callback).
Structures that implement read interfaces include:

	ReadStream: used by operators to read data and register callbacks.

	ExtractStream: used by the driver to read data.

	Write-interfaces expose the send method to send data on a stream.
Structures that implement write interfaces include:

	WriteStream: used by operators to send data.

	IngestStream: used by the driver to send data.

Some applications may want to introduce loops in their dataflow graphs which
is possible using the LoopStream.

Sending Messages

Operators use Write Streams to send data.

Receiving Messages

Operators receive data by registering callbacks or manually reading messages
from Read Streams.

Callbacks are functions which take an ERDOS message and any necessary write
streams as arguments. Generally, callbacks process received messages and
publish the results on write streams.

Ingesting and Extracting Data

Some applications have trouble placing all of the data processing logic inside
operators. For these applications, ERDOS provides special stream interfaces to
ingest and extract data.

A comprehensive example is available here [https://github.com/erdos-project/erdos/blob/master/python/examples/ingest_extract.py].

Loops

Certain applications require feedback in the dataflow. To support this use
case, ERDOS provides the LoopStream interface to support loops in the
dataflow.

A comprehensive example is available here [https://github.com/erdos-project/erdos/blob/master/python/examples/loop.py].

Operators

An ERDOS operator receives data on ReadStreams,
and sends processed data on WriteStreams.
We provide a standard library of operators for common dataflow patterns
under erdos.operators.
While the standard operators are general and versatile, some applications may
implement custom operators to better optimize performance and take
fine-grained control over exection.

All operators must inherit from the Operator base class and
implement __init__() and
connect() methods.

	__init__() takes all
ReadStreams from which the operator receives
data, all WriteStreams on which the operator
sends data, and any other arguments passed when calling
connect().
Within __init__(), the state should be initialized,
and callbacks may be registered across
ReadStreams.

	The connect() method takes
ReadStreams and returns
WriteStreams
which are all later passed to __init__() by ERDOS.
The ReadStreams and
WriteStreams
must appear in the same order as in __init__().

While ERDOS manages the execution of callbacks, some operators require
more finegrained control. Operators can take manual control over the
thread of execution by implementing
Operator.run(),
and pulling data from ReadStreams.
Callbacks are not invoked while run executes.

Operator API

Examples

Full example at python/examples/simple_pipeline.py [https://github.com/erdos-project/erdos/blob/master/python/examples/simple_pipeline.py].

Periodically Publishing Data

class SendOp(erdos.Operator):
 def __init__(self, write_stream):
 self.write_stream = write_stream

 @staticmethod
 def connect():
 return [erdos.WriteStream()]

 def run(self):
 count = 0
 while True:
 msg = erdos.Message(erdos.Timestamp(coordinates=[count]), count)
 print("SendOp: sending {msg}".format(msg=msg))
 self.write_stream.send(msg)

 count += 1
 time.sleep(1)

Processing Data via Callbacks

class CallbackOp(erdos.Operator):
 def __init__(self, read_stream):
 print("initializing op")
 read_stream.add_callback(CallbackOp.callback)

 @staticmethod
 def callback(msg):
 print("CallbackOp: received {msg}".format(msg=msg))

 @staticmethod
 def connect(read_streams):
 return []

Processing Data by Pulling Messages

class PullOp(erdos.Operator):
 def __init__(self, read_stream):
 self.read_stream = read_stream

 @staticmethod
 def connect(read_streams):
 return []

 def run(self):
 while True:
 data = self.read_stream.read()
 print("PullOp: received {data}".format(data=data))

Messages

ERDOS applications send data on streams via messages. Messages wrap data and
provide timestamp information used to resolve control loops and track data flow
through the system.

Timestamps

Timestamps consist of an array of coordinates. Timestamp semantics are
user-defined for now; however, we may eventually formalize their use in the
future in order to provide more advanced features in order to scale up stateful
operators. Generally, the 0th coordinate is used to track message’s sequence
number and subsequent coordinates track the message’s progress in cyclic data
flows.

Watermarks

Watermarks in ERDOS signal completion of computation. More concretely,
sending a watermark with timestamp t on a stream asserts that all future
messages sent on that stream will have timestamps t' > t.
ERDOS also introduces a top watermark, which is a watermark with the
maximum possible timestamp. Sending a top watermark closes the stream as
there is no t' > t_top, so no more messages can be sent.

ERDOS Package Reference

Index

 nav.xhtml

 Table of Contents

 		
 What is ERDOS?

 		
 What is ERDOS?

 		
 Example

 		
 Driver

 		
 Determinism

 		
 Performance

 		
 Streams

 		
 Sending Messages

 		
 Receiving Messages

 		
 Ingesting and Extracting Data

 		
 Loops

 		
 Operators

 		
 Operator API

 		
 Examples

 		
 Periodically Publishing Data

 		
 Processing Data via Callbacks

 		
 Processing Data by Pulling Messages

 		
 Messages

 		
 Timestamps

 		
 Watermarks

 		
 ERDOS Package Reference

_static/minus.png

_static/plus.png

_static/file.png

